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Abstract: In order to improve the tracking control 

accuracy and robustness an attitude controller for robot 

was designed, a nonlinear high-gain observer was 

designed to estimate the linear velocity of the robot, and a 

control method based on the finite time control of Output 

feedback control was proposed to realize the high 

precision tracking control. Based on Lyapunov theory, 

the stability of the closed-loop system was proved. 

Simulation results show that a rapid trajectory tracking 

performance is guaranteed without linear velocity 

feedback, the engineering effectiveness and feasibility of 

the method were illustrated by experiments． 
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1. Introduction 

In recent years, with the continuous innovation and 

breakthrough in the field of robot technology, not only 

has it created huge economic wealth for the society, it has 

also promoted the process of high industrial automation, 

and it has also improved people's living standards. With 

the rapid development of the industrial robot industry, 

people have higher and higher requirements for high-

speed and high-precision control of robots, therefore, the 

research of robot advanced control algorithm has become 

a research hotspot in the field of automation.  

In the literature [1], an attitude controller for quadrotor 

UAV was designed based on terminal sliding mode 

control method to ensure a rapid orientation tracking, 

where a nonlinear function was introduced to design a 

terminal sliding mode surface, so that the tracking error 

could converge to zero in finite time. In the literature [2], 

an induction motor flux observer based on high gain 

observation technology is proposed, which can achieve 

any precision error. The stability analysis of the nonlinear 

normal high gain observer is carried out. The literature 

[3-4] has designed time-varying high gain observers to 

estimate boundary perturbations and offset it by state 

feedback to stabilize the system. In the literature [5], only 

when the position sensor, current and speed and its 

derivative signals are obtained through the state observer, 

the position tracking control of the DC motor is realized, 

making the control system has good control performance 

and is easy to achieve with hardware. The literature [6-7] 

uses a high-gain observer to state estimate the velocity 

signal, based on the direct measurement of the ocean 

platform position signal and the velocity signal indirectly 

obtained from the state estimation. The literature [8-9] 

designed high-gain observers to measure the angular 

velocity and displacement speed, such as the robot, to 

estimate its state. Compared with the traditional control 

methods, the robot has better dynamic quality in self-

balance and track tracking, and has good application 

prospects. In the literature [10], sliding mode variable 

structure control is used to ensure the establishment of the 

manifold for the fast subsystem. In order to avoid direct 

measurement of curvature change, introduce high gain 

observer to estimate it. Lyapunov stability principle 

proves overall stability, and give upper bound on small 

parameter. 

In order to further improve robot control accuracy and 

anti-interference performance, considering nonlinear high 

gain observer, an output feedback control method based 

on finite time stability is proposed to realize high-

precision tracking control of the robot. 

2. Robot system design 

2.1. Robot Structure Design 

 The robot system is composed of the robot body, robot 

arm and controller. Its body structure belongs to the 

spatial articulated open motion chain. The controller is 

controlled by the program code executed by the upper 

position computer for the trajectory movement of the 

robot joint. The joint drive of the robot is completed by 

the servo motor, therefore, the motion control of the robot 

is actually to carry out high precision control of the servo 

motor and then realize the high precision control of the 

robot joint. 

The robot body structure (Fig. 1) is mainly composed 

of machine seat, arm, reducer, servo motor and drive. The 

control object of the experiment is the robot joint with 

plane two degrees of freedom. It reflects the precision 

control of the robot by the control algorithm by detecting 

the position of the robot joint. 

 
Figure 1. Structure of the robot experimental platform 
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2.2. Design of the Robot Control System 

The control system of the robot is composed of the 

upper computer and the controller, through the LabVIEW 

graphical human-computer operation interface, set the 

movement trajectory of the robot, and through the control 

algorithm to send the signal to the controller is designed 

to realize the trajectory control of the robot. The 

controller adopts the NI myRIO controller, the latest 

embedded system development platform launched by NI, 

to collect the servo motor encoder A phase and B phase 

pulse signal into the analog voltage signal driving the 

servo motor to achieve the purpose of closed-loop control. 

3 High-Gain Observer Design 

3.1. Finite Time Controller 

The relevant theorems and derivations of the finite 

time controller are as follows. 

Definition 1: Convergence and stability in finite time: 

For the system 

 ( , ), (0, ) 0, nx f x t f t x R    (1) 

Where f : n

oU R R   is continuous on oU R , 

and oU  is an open area of the origin 0x  .Initial state 

0 0( )x t x U   has a time dependent 0T   on 0x  at 

any initial moment, so that the solution of system (1) is 

   0 0; ;x t t t x , and 

 
 

 
0

0 0; ; 0lim
t T x

t t x


  (2) 

When
 0 0, ( )t t T x

, 0 0( ; , ) {0}t t x U 
, the 

equilibrium point of system (1) converges in finite time. 

Therefore, when 0( )t T x
, 0 0( ; , ) 0t t x 

. 

If 
nU R , then the equilibrium point of system (1) is 

globally stable in finite time. 

Lemma 1 [11] considers the following system 

 ˆ( ) ( ), (0) 0, nx f x f x f x R     (3) 

Where, 
( )f x

 is a continuous homogeneous vector 

field with homogeneous degrees of freedom k<0 with 

respect to (r1,…, rn) (ri>0, i = 1,…, n), and
ˆ ( )f x

 

satisfies
ˆ(0) 0f 

. Suppose 0x   is asymptotically 

stable equilibrium point of the system 
( )x f x

, 

then 0x   is the equilibrium point where the system is 

locally stable within a finite time. If 
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(4) 

Lemma 2[12] A closed-loop system that is globally 

asymptotically stable and locally stable in finite time is 

globally stable in finite time. 

Definition 3 If the vector 1 2[ , , , ]T

nx x x x
, then 

define

1 1 1[ , , ] sig ( ) [sgn( ) , ,sgn( ) ]T T

n n nx x x x x x x x
     ，

(5) 

Where α> 0. 

Using the separation principle, first design a state 

feedback controller to make the system meet the control 

requirements, and then design a high-gain observer to 

replace x with the estimated x̂ , thereby obtaining the 

output feedback controller. 

Define
,d de q q e q q   

, and let 1x e
, 

2 1̂x x e 
, then the dynamics equation of the robot 

can be rewritten as: 

 
 

1 2

1

2 ( ) ( , )( ) ( ) d

x x

x M q C q q q G q q




     
(6) 

Then the design controller is 

  1 2

1 2( ) ( ) ( , ) ( )p d d d dK Sig x K Sig x M q q C q q q G q
        (7) 

Where, Kp and Kd are positive definite diagonal 

constant matrices, 0 < α1<1, α2=2α1/(α1+1). 

Demonstration: Substitute formula (7) into formula (6) 

to get 

  1 2( ) ( , ) ( , ) ( ) ( ) 0d p dM q e C q q C q q e K Sig e K Sig e
 

      (8) 

Or it is written as 

 

 1 2

1 2

1

2 1 1 2 1 2

1 2

( )[( ( , ) ( , ))

( )]

d d d d

p d

x x

x M x q C x q x C x q q x

K Sig x K Sig x
 



 


     


 

(9) 

First, let’s prove the semi-global asymptotic stability: 

Consider the following Lyapunov function 

 1

0

1
( ) ( )

2

e
T

pV e M q e K Sig d
      (10) 

By derivation, there is: 

 1
1

( ) ( ) ( )
2

T T T

pV e M q e e M q e e K Sig e


    (11) 

According to formula (8) and characteristics of the 

robot, there is 

 2 ( ) ( , )T T

d dV e K Sig e e C q q e


    (12) 

Since  

 
2

2

2( , )

( ) , 1

T

d M

T T

d dm

e C q q e c V e

e K Sig e K e e e




  
 (13) 

There is 

  2
2

2( ) (1 ) ) , 1T

d dm MV e K Sig e K c V e e
        (14) 

Where, 0 1  .If we choose 2 / (1 )dm MK c V   , 

then there is 0, 1V e   . Because 0V  , it means 

that 0e  . According to LaSalle's invariant set theory, 

when t  , there are 0, 0e e  in the 

neighborhood of the equilibrium point, and the attraction 

domain can be made arbitrarily small by increasing Kd. 

Therefore, the closed-loop system is semi-global stable in 

finite time. 
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Then, let’s prove the local finite time stability of the 

system: 

From equation (9), we know that x=0 is the 

equilibrium point of the system, but system (9) is 

inhomogeneous. Therefore, we can rewrite this equation 

as 

 

 1 2

1 2

1

2 1 1 2
ˆ( ) ( ) ( )d p d

x x

x M x q K Sig x K Sig x f x
 




       

(15) 

Where 

 1 2

1

1 1 2 1 2

1 1 2

ˆ ( ) ( )( ( , ) ( , ))

( , ) ( )

d d d d

d p d

f x M x q C x q x C x q q x

M x q K Sig x K Sig x
 

     

   

 

1 1

1 1( , ) ( ) ( )d d dM x q M x q M q     

Obviously, it is easy to prove that 

 1 2

1 2

1

2 1 1 2( ) ( )d p d

x x

x M x q K Sig x K Sig x
 




      

 (16) 

There is the degree of homogeneity 1 1 0     

with respect to 11 12 1 21 22 2( , , , , , , , )n nr r r r r r . Where, 

r1i=r1=2, r2i= r2= α1+1. Since
1

1( )dM x q   

and 1 2( , )dC x q x  are smooth, and 0  , there is 

 

 

1 1 2 1 2

2

1

1 1 2 1 2
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0
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r
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 (17) 

For 
1( , )dM x q ,we can know from the mean value 

theorem that 
1 1 11 1

1 1( , ) ( ) ( ) ( )
r r r

d d dM x q M x q M q O        (18) 

Hence, there is 
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r
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 
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
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Since 11 0     , 1 2 12(1 ) 0r r      , 

for a given
2

1 2( , )T T T nx x x R  , there is 

 
 1 2

2

1 2

0

ˆ ,
lim 0

r r

r

f x x



 

 
  (20) 

Therefore, according to Lemma 1 and 2, the closed-

loop system is locally stable in a finite time, and the 

demonstration is completed. 

3.2. High Gain Observer 

In the actual robot control system, it is necessary to 

measure the speed signal of the robot joints, but it is 

difficult to access the speed information or the 

measurement cost is quite high. To this end, a nonlinear 

high-gain observer is used to estimate the linear speed 

information of the robot online. A stable output feedback 

control method based on finite time is proposed to 

achieve high-precision tracking control of the robot. 

Let’s define 1 2,p q p q  . Where p1 is measurable, 

and p2 is not measurable, which will be estimated by the 

high-gain observer, so there is 

 
1 2

2 1 2 2( , , , )

p p

p H p p p





 (21) 

Where 

 1

1 2 2 1 1 2 2 1( , , , ) ( ) ( , ) ( )H p p p M p C p p p G p     

Suppose that 1 2
ˆ ˆ,p p  are the estimated values of p1, p2 

respectively, then the high-gain observer of the dual-joint 

robot system is: 

 

 

1
1 2 1 1

2
2 12

ˆ ˆ ˆ( )

ˆ

h
p p p p

h
p H p p






  


   


 (22) 

Where, h1, h2 meet the Hurwitz condition, and ε is a 

small normal number, so the tracking control method 

based on the high-gain observer can be obtained: 

 1 2

1 2
ˆ( ) ( ) ( , ) ( )p d d d dK Sig e K Sig e M q q C q q q G q

         (23) 

Where, 2
ˆ ˆ

de q q 
. 

Theorem 1 for a robot system (6) with uncertainty, if 

the observer is designed as equation (22) and the 

controller is designed as equation (23), 

when 2 / (1 )dm MK c V  
 is selected, the closed-loop 

system is locally stable in finite time. 

4. Experimental Results and Analysis 

To illustrate the engineering effectiveness and 

feasibility of the algorithm designed (abbreviated as 

"OFTC"), the performance of the design controller was 

tested experimentally. The dynamic equation of the 

second-joint mechanical arm is 

11 12 1 2 2 1 1 1

12 22 2 1 2 2 2

2
+

0

m m q bq bq q f

m m q bq q f





            
            

           

 (24) 

Where 

11 1 2 3 2 4 2

12 2 3 2 4 2

22 2

3 2 4 2

1 1 1 1 1

2 2 2 2 2

2 cos 2 sin

cos sin

sin cos

sgn( )

sgn( )

v e

v e

m p p p q p q

m p p q p q

m p

b p q p q

f f q f q

f f q f q

   

  



 

 

 

 

p1, p2, p3, p4 is the minimum inertial parameter of the 

robot, 1vf , 1ef  viscous friction and coulomb friction 

coefficient of joint 1, and also 2vf , 2ef the coefficient of 

friction of joint 2. 

The actual parameters of the robot are p1=0.0289kgm2,  

p2=0.0029kgm2, p3=-0.0035kgm2, p4=0.0079kgm2, 

1vf =0.5279, 1ef =0.6996, 2vf =0.001, 2ef =0.002. Its 

estimate is p1=0.0268kgm2, p2=0.01528kgm2, p3=–

0.00025kgm2, p4=0.0041kgm2, 1vf =0.6144, 1ef =0.8575, 

2vf =0.0120, 2ef =0.0447. The given reference track 

signal is qd1=sin (2πt), qd2=sin(2πt). The initial state of the 
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system is q1 (0) = 0.2rad, q2 (0) = 0.2rad. External 

interference with the τd = [0.2 sin (10t), 0.1 sin (10t)]T. 

It is compared with the finite time tracking controller 

proposed in reference [11], the finite time controller 

(FIDC) is: 
1 2

0 0 0( ) ( ) ( ) ( , ) ( )d p dM q q K Sig e K Sig e C q q q F q
          (25) 

Where Kp = diag (1000, 1000), Kd = diag(500, 500), α1 

= 0.7, α2 = 2α1/(α1+1) = 0.8235, F0 = [f1, f2]T. 

The parameters of the control algorithm (OFTC) were 

set to Kp = diag(100, 100), Kd = diag(50, 50),α1 = 0.8, and 

the observer parameter was set to h1 = 1, h2 = 1, ε = 0.01. 
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Figure 2. Trajectory tracking 
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Figure 3. Speed estimation error 
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(a)                                                           (b) 

Figure 4. Tracking error 
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Figure 5. Input torque 
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Figure 2 and Figure 4 are the trajectory tracking and 

tracking error of the two joints of the robot, respectively, 

and Figure 3 shows the velocity estimation error of the 

robot joint. Analysis of Figure 4 shows that the proposed 

nonlinear high-gain observer has good transient response 

properties and small stability error, which can estimate 

joint velocity signals accurately in real time online. 

Figure 5 shows the control input moments of the two 

joints of the robot system, and the comparison shows that 

the OFTC algorithm is better robust to kinetic 

uncertainties and external interference. 

5. Conclusion 

In order to further improve the high-speed tracking 

control of a given attitude, we propose a finite time stable 

track tracking method, design the joint speed information 

control algorithm, solve the output feedback problem in 

the robot system, and still obtain satisfactory control 

performance in complex nonlinear robot systems with 

multiple input, multiple output, strong coupling and 

uncertainty. 
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